PDA

View Full Version : Số đỏ



luunhuhoa
26-03-2010, 12:02 AM
Bài viết lấy từ blog GS.Vũ Hà Văn (Rutgers Uni)
----------------------
Dân ta thích đỏ đen.



Không biết có tự bao giờ, nhưng số đề đang là trò “đỏ đen” được nhiều người ưu ái nhất, chơi nhiều nhất. Đêm nằm mơ số đề đẹp, sáng ra chợ nghe bàn, trưa đi đặt số, chiều đợi radio nghe xổ số… đề.


Luật chơi đề đại loại như sau: Sáng bạn đặt một số tiền, nói đơn giản là 1$ cho chủ đề, vào một số từ 00 đến 99. Mục đích của người chơi đề là làm sao số này trùng vào 2 chữ số cuối cùng của giải sổ xồ do nhà nước phát hành trong ngày đó. Khi xổ số quay, hai chữ số này được xác định (gọi là “đề về”), chủ đề xo số và thanh toán tiền nong. Nếu sổ của bạn trùng, bạn sẽ được 70$ (tức 70 lần số tiền đầu tư). Nếu không trúng, bạn sẽ mất 1$ đặt cược lúc đầu.


“Ai ơi yêu lấy số đề
Khi đi một chỉ, khi về bảy cây !”


Đánh đề thông dụng có lẻ bởi nó đơn giản dễ hiểu, và khả năng trúng xố, trong mắt người chơi là tương đối cao (1/100). Khả năng này cao hơn nhiều so với các giải xổ số chính thức của nhà nước, và có tác dụng tâm lý rất mạnh. Những người chơi đề lâu ngày, thường ai cũng thắng, hoặc quen biết những người đã thắng một vài lần. Tâm lý chơi đề để có một cơ hội “đổi đời” rất phổ biến, nhất là đối với những người nghèo. Chuyện về “nuôi đề”, nằm mơ thấy “đề về”, đi thăm mộ thấy số đề, vv là những chuyện nghe thấy hàng ngày.


Vậy thực chất ĐÁnh Đề có phải là một trò chơi đem lại nhiều hy vọng ?


Nhìn về khía cạnh toán học mà nói, thì luật chơi đề rất thiệt cho ngươi chơi, vì kỳ vọng của nó là một số âm to đùng.
Giả sử ông A chơi đề ngày một lần, mỗi lần đều đặn 1 triệu đồng. Như vậy sau 6 năm,
tính là 2000 ngày cho chẳn, ông A bỏ ra 2 tỷ. Mổi lần chơi, xác xuất trúng là 1%.
Như thế, trung bình ông A sẽ trúng 20 lần. Mỗi lần được 70 triệu, 20 lần là 1,4 tỷ, như vậy, trung bình ông A lỗ 600 triệu.


Tất nhiên, ông A sẽ nói “ờ thì trung bình là vậy, nhưng nhỡ tôi may thi sao ?”.
Xác suất may của ông A hoàn toàn có thể tính được. Nó được biểu diễn qua một định lý rất nổi tiếng và cơ bán:


Định lý giới hạn trung tâm:
http://l.wordpress.com/latex.php?latex=x_1%2C+%5Cdots%2C+x_n&bg=ffffff&fg=000000&s=0 là các biến độc lập ngẫu nhiên, có cùng
kỳ vọng là E và phương sai là http://l.wordpress.com/latex.php?latex=V%3D%5Csigma%5E2&bg=ffffff&fg=000000&s=0. Khi đó nếu http://l.wordpress.com/latex.php?latex=n&bg=ffffff&fg=000000&s=0 tiến đến vô cùng
http://l.wordpress.com/latex.php?latex=+Pr+%28%5Cfrac%7B%5Csum_%7Bi%3D1%7 D%5En++x_i+-+nE%7D+%7B+%5Csqrt+n+%5Csigma+%7D+++%5Cge+x+%29%5C rightarrow++%5CPhi%28x%29++.+&bg=ffffff&fg=000000&s=0
Ở đây http://l.wordpress.com/latex.php?latex=%5CPhi%28x%29&bg=ffffff&fg=000000&s=0 là hàm phân bố Gauss
http://l.wordpress.com/latex.php?latex=%5CPhi%28x%29%3D+%5Cfrac%7B1%7D%7B %5Csqrt+2+%5Cpi%7D+%5Cint_x%5E%7B%5Cinfty%7D+e%5E% 7B-t%5E2%2F2%7D+dt.+&bg=ffffff&fg=000000&s=0
Điều quan trọng ở đây là hàm http://l.wordpress.com/latex.php?latex=e%5E%7B-t%5E2%2F2%7D&bg=ffffff&fg=000000&s=0 tiến đến 0 rất nhanh với http://l.wordpress.com/latex.php?latex=t&bg=ffffff&fg=000000&s=0, do đó http://l.wordpress.com/latex.php?latex=%5CPhi%28x%29&bg=ffffff&fg=000000&s=0 cũng tiến đến 0 rất nhanh với http://l.wordpress.com/latex.php?latex=x&bg=ffffff&fg=000000&s=0. Chẳng hạn
http://l.wordpress.com/latex.php?latex=%5CPhi%281%29+%5Cle++.16&bg=ffffff&fg=000000&s=0, http://l.wordpress.com/latex.php?latex=%5CPhi%282%29++%5Cle++.03&bg=ffffff&fg=000000&s=0, http://l.wordpress.com/latex.php?latex=%5CPhi+%283%29+%5Cle++.003&bg=ffffff&fg=000000&s=0. Định lý trên có thể viết lại dưới dạng
http://l.wordpress.com/latex.php?latex=Pr+%28%5Csum_%7Bi%3D1%7D%5En+x_i+% 5Cge+nE+%2B++x+%5Csqrt+n+%5Csigma%29+%5Capprox+%5C Phi+%28x%29+.+&bg=ffffff&fg=000000&s=0


Quay trở lại với ông A. Muốn ứng dụng định lý trên, ta cho http://l.wordpress.com/latex.php?latex=x_i&bg=ffffff&fg=000000&s=0 là số tiền ông A thu hoạch trong lần chơi thứ http://l.wordpress.com/latex.php?latex=i&bg=ffffff&fg=000000&s=0. http://l.wordpress.com/latex.php?latex=x_i&bg=ffffff&fg=000000&s=0 có phân bố như sau: http://l.wordpress.com/latex.php?latex=Pr+%28x_i+%3D-1%29+%3D+.99&bg=ffffff&fg=000000&s=0 (thua) và http://l.wordpress.com/latex.php?latex=Pr+%28x_i+%3D69%29+%3D.01&bg=ffffff&fg=000000&s=0 (thắng). Kỳ vọng của http://l.wordpress.com/latex.php?latex=x_i&bg=ffffff&fg=000000&s=0 là http://l.wordpress.com/latex.php?latex=-.3&bg=ffffff&fg=000000&s=0 (triệu đồng) va phương sai xấp xi http://l.wordpress.com/latex.php?latex=49%3D7%5E2&bg=ffffff&fg=000000&s=0. Nếu ông A không lỗ sau 2000 lần chơi, thì http://l.wordpress.com/latex.php?latex=%5Csum_%7Bi%3D1%7D%5En+x_i+%5Cge++ 0&bg=ffffff&fg=000000&s=0, tức ta phải lấy
http://l.wordpress.com/latex.php?latex=x++%5Cge+%5Cfrac%7Bn%7CE%7C%7D+%7B +%5Csqrt+n+%5Csigma+%7D++%5Capprox++%5Cfrac%7B+600 %7D+%7B%5Csqrt+%7B2000%7D+7%7D++%5Capprox+1.9.+&bg=ffffff&fg=000000&s=0


Vậy xác suất để ông A “may” (không lổ vốn) là độ http://l.wordpress.com/latex.php?latex=%5CPhi+%281.9%29++&bg=ffffff&fg=000000&s=0. Xác suât này cỡ ba phần trăm. Nói một cách nôm na, nếu có 100 người chơi như ông, trung bình chỉ có 3 người không lỗ.

(Tất nhiên bạn được nghe ba ông này tuyên truyền về “tài năng” của mình bao nhiêu lần lại là chuyện khác. Đây là khía cạnh tâm lý của trò chơi.)
Định lý giới hạn trung tâm phản ánh một hiện tượng quan trọng và có tính ứng dụng cao:


Hiện tượng (Large deviation): Một biến ngẩu nhiên được
xác định bởi nhiều biến ngẩu nhiên độc lập thường lấy một giá trị gần với kỳ vọng của nó.


Trong trường hợp vừa rồi, biến này là http://l.wordpress.com/latex.php?latex=S%3A%3D+x_1+%2B+...%2B+x_n&bg=ffffff&fg=000000&s=0, tổng số thu hoạch của ông A.
Bạn có thể dùng định lý giới hạn trung tâm để so sánh sồ đề với rullet, một trò chơi thông dụng ở
casino. Ở cả hai trò, kỳ vọng của người chơi đều âm, nhưng kỳ vọng của rullet là một số âm nhỏ.


The Central limit theorem was first established by de Moivre, năm 1733, and has been extended and strengthened by a series of famous mathematicians, including Laplace, Lyapunov, Lindeberg, Kolmogorov etc (see this (http://en.wikipedia.org/wiki/Central_limit_theorem) and this (http://en.wikipedia.org/wiki/Normal_distribution)). The phrase “Central limit theorem” was first used by Polya around 1920. Almost 300 hundred years after its discovery, the CLT still has been used daily in various fields of mathematics, and research motivated by CLT and the Large Deviation Phenomenon plays a key role in probability, statistics, high dimensional geometry, mathematical physics, combinatorics and theoretical computer science.



Vĩ thanh: Bạn Luciano (bên Thích Học Toán) băn khoăn là dân chơi đề thực sự thường không đánh như ông A.



Đúng vậy, ví dụ của ông A là một ví dụ đơn giản nhất (to sell the point). Một dân đề thực thụ sẽ chơi phức tạp hơn, chẳng hạn:
Ông B (more advanced player) sẽ chơi như sau:
(1) Số 23 trong 5 ngày liền, nếu không thắng, chuyển sang con 35.
(2) Nếu 35 trong năm ngày không về, nhịn tắm một tuần, chuyển sang con 12 và chơi lại con 23.
(3) Nếu một tuần sau đề vẫn không đậu, tắm và đi lễ chùa, nghỉ hai ngày.
(4) Chơi tiếp con 12 và 89, tránh gặp phụ nữ buổi sáng, vv
Hiện tượng Large deviation ke tren sẽ chỉ ra cho chúng ta là, bất kể ông B thay đối thế nào, với xác suất gần bằng một, sau một thơi gian dài, ông ta sẽ thu hoạch y hệt như ông A, tức là lỗ khoảng 30% vốn.
This is one of the key points of martingale theory.
http://vuhavan.wordpress.com/2010/03/17/s%e1%bb%91-d%e1%bb%8f/

thuydaica
26-03-2010, 06:15 AM
Đánh đề là 1 hình thức gửi tiết kiệm với lãi xuất -30% :grin::grin::grin::grin::grin::grin:

HLN1994
26-03-2010, 11:07 AM
Haha,hay thật.:grin::grin::grin:......................... ............................